#error-page { background-color:#e9e9e9; position:fixed !important; position:absolute; text-align:center; top:0; right:0; bottom:0; left:0; z-index:99999; } #error-inner { margin:11% auto; } #error-inner .box-404 { width:200px; height:200px; background:#21afa4; color:#fff; font-size:80px; line-height:200px; border-radius:10px; margin:0 auto 50px; position:relative; } #error-inner .box-404::after { content:" "; width:0; height:0; bottom:-8px; border-color:#21afa4 transparent transparent; border-style:solid; border-width:9px 9px 0; position:absolute; left:47%; } #error-inner h1 { text-transform:uppercase; } #error-inner p { line-height:0.7em; font-size:15px; }

Studio Portable Audio Interface

Studio Portable Audio Interface.
Facilities high quality and also functionality within a sleek simple
to handle pack
Zen Facilities will be the professional, lightweight music program with more reasonably competitive analog and also digital connection. The actual 12 world-class microphone pres, Antelope's signature clocking, the particular on-board DSP effects having several check mixers plus the private low-latency UNIVERSAL SERIES BUS connection produce Zen the world-class mobile creating program, that will quickly match in a very back pack or perhaps equipment case. Zen Facilities is designed to match the needs of the modern day maker or perhaps professional on-the-go, together with spot seem technical engineers, seem manufacturers, unbiased rings and also music artists and bands searching for greater seem high quality and also flexibility.

Proven technologies regarding substantial music
Antelope Sound Acoustically Centered Clocking supplies the most real analog appearing A/D & D/A transformation on the market. Antelope's clocking and also transformation along with the personalized UNIVERSAL SERIES BUS technologies applied with Zen are the exact same towards people within the top-selling 32-channel Orion program the industry centerpiece within the playback rigs regarding artists like Rihanna, Jay-Z and also Justin Timberlake, and also within the combining and also perfecting companies associated with technical engineers similar to Eric Sarafin (aka Mixerman), Brian Vibberts, Howie Wienberg or perhaps digital audio makers similar to Robert Babicz and also Dusty Kid.


Spontaneous management and also sign routing
getting one of a kind versatility
Zen Facilities will be completely adjustable having an perceptive desktop app upon the two COMPUTER and also Mac, offering flexible sign routing and also DSP-based effects with personalized presets. Customers can produce nearly four unbiased, zero-latency combines assignable to any results, such as the two unbiased headphone results and also check results. Many music I/O can be purchased together for the complete associated with 37 achievable feedback and also 34 productivity programmes, plus 24 simultaneous I/O programmes by using personalized UNIVERSAL SERIES BUS, assisting 24-bit, 192 kHz music.

DSP effects and flexibility to enable
creative audio production
In addition to proven sound quality, Zen Studio offers an extremely powerful DSP, based on a custom FPGA device with massive parallel processing capabilities. The proprietary FPGA makes the DSP chip in Zen Studio eight times more powerful than the ones used in similar devices. This allows fast and easy simultaneous processing of multiple effects, enhancing the workflow like no other device on the market.

0 comments:

Post a Comment

A versatile multi-channel AD/DA converter and USB interface

Orion32 is really a 32-channel A/D & D/A converter and also audio master clock, helping the two MADI and also UNIVERSAL SERIAL BUS interfaces, clocked by Antelope’s distinguished 64-bit Acoustically Aimed Clocking (AFC) technology.
Orion32 makes it possible for 192 kHz I/O buffering regarding 32-channel digital camera audio by means of UNIVERSAL SERIAL BUS, offering smooth on the web connectivity in order to almost any USB-enabled DAW, laptop or computer or ipad. This converter additionally offers thirty-two routes regarding 96 kHz audio by way of it is Linens Optic MADI I/O cable connections, which enables you to interact with almost any superbly set up MADI system.

Orion32 additionally helps ADAT protocol by featuring 07 I/O routes, for increased compatibility along with a lot of audio devices. This multi-channel converter advices and also outputs pass your analog signal by way of 8 D-SUB 30 I/O connectors.
Low latency UNIVERSAL SERIAL BUS in Macintosh and also COMPUTER SYSTEM
Applying Antelope Music custom-built UNIVERSAL SERIAL BUS computer chip, Orion32 defines particularly reduced latency amounts even if buffering in unison thirty-two routes within and also thirty-two away. This latency functionality may differ between just one and also 6. 5 master of science for various computer hardware and also software package options.
Outstanding course-plotting & combining versatility
With its smooth digital camera course-plotting and also combining options, your Orion32 offers extensive versatility. This course-plotting element makes it possible for noise technical engineers, for instance, in order to send out your ADVERT signal in order to the two MADI and also UNIVERSAL SERIAL BUS interfaces, for reside combining and also overseeing. The product is actually was able via a user-friendly computer's desktop app designed for the two Glass windows and also COMPUTER ITSELF Back button. Also it provides you with a zero-latency machine and also a few pre-programmed switches for easily recall regarding favourite settings.


Antelope clocking for improved sonic exactness
Orion32 completely details an audio engineer’s dependence on good quality, clean up and clear transformation, incorporating the actual efficiency connected with MADI and HARDWARE interfaces while using the efficiency connected with Antelope clocking.
Not only is it an exceptionally good quality audio tracks converter, Orion32 is also a good audio tracks learn timepiece. The Orion thirty two uses Antelope’s little-known 4th generation connected with AFC and cooker controlled oscillator -- both technology in which produced Antelope Music clocks a business leader for exactness and audio excellent within taking, learning and post-production establishments world wide. The some concept timepiece outs, with the 10 MHz insight, create Orion thirty two ideally suited to be in the heart of almost any task or maybe high-end business.

1U eco-friendly design and style
Orion32 can be tied in within a 1U box with an eco-friendly electrical power usage of solely 20 M. Along with preserving stand space and getting minimal heating system degrees, Orion32 comes with an particularly affordable costs affordable perhaps for the tiny residence business.

0 comments:

Post a Comment

Kronberg Academy Masters Faculty member Cello


Frans Winther .
Le violoncelliste suédois Frans Helmerson a commencé sa formation musicale avec Guido Vecchi à Göteborg avant de passer à étudier avec Giuseppe Selmi à Rome et William Pleeth à Londres. Sergiu Celibidache et Mstislav Rostropovich a également joué un rôle très influent dans son développement artistique. En 1971, il a remporté l'un des prix de musique les plus célèbres pour les violoncellistes, le concours Cassado à Florence - la première de nombreuses autres distinctions. Tours lui ont pris à d'autres pays en Europe ainsi qu'au Japon, la Russie, l'Amérique du Sud, l'Australie, la Nouvelle-Zélande et les États-Unis. 

Frans Helmerson joue avec de nombreux orchestres de renom et reçoit des critiques élogieuses exceptionnelle pour ses concerts et enregistrements. 

Son amour de la musique de chambre est une autre force motrice importante dans ses projets musicaux. Il est régulièrement invité dans les grands festivals européens tels que Verbier, Pablo Casals-Festival ou le Festival de Ravinia, et a passé de nombreuses années en tant que directeur artistique de la Umea-Korsholm international Chamber Music Festival. En 2002, il fonde le Quatuor à cordes de Michel-Ange avec Mihaela Martin, Stephan Picard et Nobuko Imai. En plus de sa carrière de soliste, chambriste et chef d'orchestre, Frans Helmerson enseigné de nombreuses années en tant que professeur aux Conservatoires de Cologne et à Madrid. Depuis 2011/12, il a enseigné en tant que professeur invité à l'Académie de musique Hanns Eisler de Berlin. Frans Helmerson joue un violoncelle de Domenico Montagna (1690-1750).

0 comments:

Post a Comment

History Of The Violin

History Of The Violin.
1. Origen del violín

Los instrumentos de cuerda primero se registraron en Europa en la Edad Media. Por "cuerda" nos referimos a instrumentos tocados con un arco. Este instrumento fue el "violín" de los Minne-cantantes. Pero no tenía mucho en común con un violín. Fue en el siglo 15 cuando, poco a poco, la familia de Gambs y violines desarrollado.

En los tiempos del renacimiento, que tuvo un gran impacto en todas las artes, sobre todo en la construcción de instrumentos. El violín como se le conoce hoy en día fue construida a principios del siglo 16. En este clima también surgieron la viola y el violonchelo.

Todo lo que se explica por el violín y sus estructuras se puede hacer referencia a toda la familia de instrumentos de cuerda. Este grupo de instrumentos se ha desarrollado con el fin de satisfacer las nuevas ideas de sonidos que surgieron en estos tiempos en Italia. Poco a poco, tomó el lugar de los Gambs y violas que los precedieron.

Fue con los fabricantes de Cremonese que trabajan en este entorno que el violín y su familia llegaron a su cenit, y aunque las innovaciones técnicas se han aplicado en el tiempo, la planta y su forma básica se siguen utilizando hoy en día.

En Italia, que escapó de la guerra de treinta años, la fabricación de violines alcanzó un enorme auge. Andrea Amati vivió en Cremona entre 1535 y 1611; se convirtió en el fundador de la escuela más famosa del mundo de la fabricación de violines. No es cierto instituto, que se entiende pero una caracterización especial local de todos los diferentes centros de violines; el arte de la pintura ha conocido un efecto similar. Así que, hay, por ejemplo, la escuela de Brescia, de Cremona, de Milán, sino también la escuela de Nápoles y muchos más.

Posteriormente, la fabricación de violines expuso sobre todo el continente de Europa. Pero fue Cremona que fue el hogar de los más famosos de todos los fabricantes de violines: Las familias Amati y Guarneri, Antonio Stradivari, las familias Ruggeri y Bergonzi. Durante más de 150 años, los violines hechos por Stradivari y Guarneri han sido los instrumentos de concierto más deseados.

2. instrumentos magistrales Por qué viejos suenan tan bien

El descenso de la fabricación de violines comenzó en la segunda mitad del siglo 18. Causado por un crecimiento permanente de la demanda de instrumentos de los violines se vieron obligados a producir más y producir más rápido. Utilizaron barnices que secan más rápidamente, pero que no pudo llegar a la calidad de los ancianos. Sin embargo, cada luthier y todos los entusiastas de violines lamenta la desaparición del viejo italiano, los llamados clásicos, barnices. Así, hay algunos fabricantes de violines que tratan en gran medida para reconstruir viejos barnices; invierten mucho tiempo para sus experimentos.

Muchas influencias negativas para la fabricación de violines son el resultado de la contaminación de nuestro medio ambiente. Se sabe que en los primeros tiempos, balsas transportan todos los árboles cortados. El río Po hace 250 años - un río limpio - no se puede comparar con la vía fluvial contaminada que es hoy en día. El mismo hecho es válido también para casi todos los tramos de agua. Debido al hecho de que la madera es un material con alta absorbencia, todas las sustancias disueltas en el agua penetran en la madera. Durante el proceso de desecación, todas estas sustancias permanecen en la madera. Además, durante todo el proceso de trabajo más tarde por el fabricante de violines, esta influencia negativa no se puede corregir.

Pero el entorno es un aspecto importante no sólo en lo que se refiere a la madera. Todas las sustancias, que se utilizan para producir barnices son productos naturales. El llamado relleno de poros se compone de propóleos que es producida por las abejas. La coloración de barnices consisten en colores naturales, los disolventes son los aceites etéreos naturales. Todas las sustancias naturales que se utilizan en el violín haciendo hoy en día no son comparables con las sustancias de los primeros tiempos; lamentablemente, han perdido su pureza.

Los materiales ideales que fueron utilizados en la fabricación de violines clásica y el efecto muy positivo del proceso de envejecimiento como resultado la integridad de todos los instrumentos clásicos hechos por maestros italianos.

3. Restauración de obras maestras

Es el sonido de estos instrumentos en la actualidad el mismo que era en tiempos de Stradivari? Ciertamente no. La mayoría de los músicos se reduciría instrumentos con un sonido original de aquellos tiempos. Es absolutamente claro que no se pueden reproducir en el concierto de un solista (excepto en la música barroca). Los instrumentos no tendrían una variedad de sonidos tales y que no tendrían la capacidad de llegar a las filas más alejadas de una sala de conciertos con suficiente claridad. El hecho de que puedan ser reproducidos en el concierto de hoy se debe a los fabricantes de violines. Mucho know-how y las habilidades manuales y un montón de experiencia son necesarios para restaurar el tono de un instrumento antiguo y otra vez.

Además, hay reparaciones que se hizo necesaria debido a accidentes y daños; el violín es un instrumento muy sensible con una alta tendencia a las grietas, si se ha caído. Además, el daño puede ser causado por el aire que es demasiado seco, lo que ocurre más a menudo con nuevos instrumentos; lamentablemente estas grietas causadas por la sequedad son más comunes debido a la calefacción central y aire acondicionado

4. Hacer nuevos instrumentos

En el curso de los siglos, el taller no ha cambiado mucho. Todavía hay las mismas herramientas que fueron utilizadas por los antiguos maestros: el banco de carpintero, sierras, pequeños y grandes aviones, así como cinceles de madera al igual que los utilizados para la escultura. Por otra parte, las hojas y las plantillas, también cepillos para el barnizado y por encima de todos los grandes cuchillos de talla de madera están todavía en uso. Aún así, al Sprenger Geigenbau, hay herramientas en el uso que se utilizaron originalmente por el fundador Fritz Sprenger.

Para la violines, la madera es el material más importante; es natural que la correcta elección de la madera es de vital importancia para lograr la mejor calidad de sonido. Madera que es demasiado pesado debido a su peso específico no puede ser utilizado - aunque parece quizá maravillosa. También es debido a este aspecto que la producción en masa de los violines tiene que fallar: en estos días, incluso con máquinas modernas, controladas por ordenador; las obras es demasiado mecánica, sin ninguna consideración por los materiales utilizados. La producción en masa nunca cumplirá el aspecto fundamental, ya que cada pieza de madera debe ser tratada de manera diferente, incluso cuando la madera se corta de un mismo tronco, las piezas individuales son muy diferentes el uno del otro. En el extremo inferior del tronco, la madera es generalmente más difícil que en la parte superior, también, piezas que crecieron bajo el sol, obviamente, difieren de las piezas que crecieron a la sombra.

Dos tipos de madera son los más comunes en la fabricación de violines: abeto para el vientre y el arce para la espalda y el desplazamiento. El diapasón consta de ébano, que es una madera muy dura. Las clavijas y el cordal son en su mayoría hechas de ébano, jacaranda o boj.

La mejor madera de arce proviene de Bosnia, el abeto más adaptada procede de países de Europa Central; que crece a una altitud de unos 1000 metros sobre el nivel del mar. La madera del ébano procede de África - se trata de madera de la palmera datilera.

El tipo más común de construcción es la que tiene la llamada forma interior. Las costillas se ajustan a esta forma. Las costillas, que son alrededor de 1,2 mm de grosor, están dobladas sobre el hierro doblado. A continuación, se fijan con un poco de pegamento en las láminas superior e inferior del bloque y en la esquina bloques. La espalda y el vientre del violín se sierran con su contorno exacto. Todo este proceso sucede de acuerdo con el patrón preciso de las plantillas. Las plantillas se pueden tomar de un instrumento, por lo que por ejemplo, de un violín hecho por Stradivari o Guarneri; tal vez, que se cambian un poco con una pequeña peculiaridad personal. El vientre y la parte posterior, que se han cortado son arqueadas después.

Por lo tanto, nada más que las costillas se dobla o se presiona, todo es elaborado de una pieza sólida de madera. Cuando el arco exterior se ha terminado la parte interior de la espalda y el vientre son arrancados. El grosor del vientre y la espalda no es la misma para toda el violín; su madera es de entre 2,5 y 4,5 mm de espesor. El luthier tiene que ajustar su trabajo con el carácter de la madera. Esto es una ventaja esencial sobre violines que son hechas por máquinas. Después de la talla y la preparación, la parte trasera se fija a la llanta de la costilla. Las f-agujeros se cortan del vientre y luego la barra armónica se ajusta y se fijaron. Con el fin de encontrar la forma de las efes, el luthier se centra en ejemplos clásicos - quizás también en sus particularidades personales. A continuación, la forma interna tiene que ser separado de las costillas; después, el vientre se fija en el borde de la costilla. Por último, la espalda y el vientre y se ponen en los bordes son redondeados. Con esto, el cuerpo del instrumento está terminado.
     
El rollo se corta de madera de arce, que debería - si es posible - que coincida con la espalda y las costillas. Cuando el desplazamiento y la llamada peg-box ha sido elaborado, el diapasón se va adaptando al cuello. Entonces, el cuello completa se monta en el cuerpo, lo que obviamente es un proceso de trabajo que tiene que ser llevado a cabo con gran precisión; que tiene un gran impacto no sólo en posibilidades de reproducción técnica del instrumento, sino también en su sonido. Ahora, el instrumento blanco está terminado. Ahora es sólo su vestido de barnizado que falta.

5. El barniz

Las tres funciones más importantes del barniz son los siguientes:
1. Debe proteger el instrumento de las influencias negativas del clima y la suciedad
2. Debe aumentar las posibilidades del instrumento de sonido
3. Cabe destacar la belleza natural de la madera

La mayoría de los violines se esfuerzan para el desarrollo de una receta ideal para barnices. De hecho, el barniz tiene un gran impacto en el sonido. Un barniz blando y un revestimiento inferior insuficientes tienen una tendencia a amortiguar en gran medida el sonido de un violín. Si el barniz es demasiado duro o quebradizo, en cambio, el sonido se vuelve estridente y penetrante.

En resumen, se puede decir que un instrumento, que está mal o incorrectamente construido no puede convertirse en una obra de arte sólo por un excelente barniz. Sin embargo, un buen instrumento puede ser arruinado por un barniz miserable.

0 comments:

Post a Comment

Music Teory 2014

Kreative Analyse und kritische Prüfung von Annahmen über Musik und Musik Diskurs bilden den Kern der Diplom-Studium in Musiktheorie an der Washington University. Studenten der engen Studie von Musikwerken und der Prozess der musikalischen Denkens begangen wird eine willkommene Umgebung in der Abteilung, die den Master of Arts und Doctor of Philosophy Grad in Musiktheorie bietet. Der Diplom-Programm bereitet die Studierenden, die Forschung in Musikanalyse und in der Sprache und Methodik der Musiktheorie zu unternehmen. Vorbereitung umfasst Führungs jeden Schüler bei der Entwicklung seiner eigenen Denkweisen und Ausdruck. Von Anfang ihres Studiums, entwickeln Studenten Mentor Beziehungen mit Dozenten und verpflichten unabhängigen Lesen und Forschungsprojekte. Alle Schüler beteiligen sich an der Theorie Kolloquium, in dem Studenten und Dozenten treffen sich regelmäßig, um ihre aktuelle Forschung, Themen von gemeinsamem Interesse, aktuelle Publikationen und musikalische Werke zu diskutieren.

Fakultät Forschungsinteressen umfassen kritische Untersuchung der Methodik, kontextuellen und phänomenologische Analyse, Schenkerian Theorie, Serienanalyse , die Rolle der bildlichen Sprache bei der Festnahme musikalische Werke, Gender Studies und vergleichende Studien in der Literaturtheorie. Die Forschung der Fakultät Theorie ist sehr eng auf den westeuropäischen Repertoires aus dem 18. bis 20. Jahrhundert konzentriert.

Musiktheorie Voraussetzung für den Abschluss

M. A. - 36 Einheiten der Absolventen-Studie

12 Einheiten der Musiktheorie
9 Einheiten der Musikgeschichte und Bibliographie
3 Einheiten Intro zur zeitgenössischen Musiktheorie
12 Einheiten von Wahlfächern
Tastatur Kenntnisse
Lesen Kenntnisse der Fremdsprache 1
These
Ph.D. - 72 Einheiten der Absolventen-Studie

9 Einheiten der Fundamente (Intro zu zeitgenössischen Pop-Musiktheorie, Literaturverzeichnis, Geschichte der Theorie)
18 Einheiten der Musiktheorie
6 Einheiten Zusammensetzung
12 Einheiten der Musikgeschichte
6 Einheiten außerhalb der Musik
17-21 Einheiten von Wahlfächern
1 Einheit der Bachelor-Pädagogik-Seminar
Tastatur Kenntnisse
Lesen Kenntnisse von 2 Fremdsprachen (Deutsch und entweder Französisch, Italienisch, eine Computersprache kann für die zweite Sprache nach die Bedürfnisse des Schülers ersetzt werden)
schriftliche und mündliche Abschlussprüfungen
Dissertation mit dem endgültigen mündliche Verteidigung der Dissertation
Abschluss der Lehrbedarf
Studenten, die einen Master-Abschluss an einer anderen Institution abgeschlossen haben, können bis zu 24 Einheiten in Richtung der Transfer Kredit Ph.D. Die normalen Last für eine Studentin ist 12 Einheiten pro Semester im ersten Jahr und 9 Einheiten pro Semester in den folgenden Jahren, abhängig von der Form und Höhe der finanziellen Hilfe.

0 comments:

Post a Comment

Free Online Guitar Course

Martin Taylor.
Free Jazz Guitar Course van Martin Taylor

Haal de gratis solo jazz gitaar video cursus van de bekroonde online gitaarleraar Martin Taylor. Deze free jazz gitaarlessen dekken beschrijven het beeld

Jazz Guitar Chords met behulp van de Jazz Guitar Steigersysteem
Jazz Guitar Improvisation
Jazz Guitar Scales
Jazz Guitar Progressions
Jazz Guitar Voicings & Phrasing met gast Julian Lage
Lopende baslijnen met Comping
Leren door het spelen van muziek
Het creëren van je eigen jazzgitaar regeling door middel van 'begeleide arrangementen'
Meld je aan voor de 'Free Jazz Guitar' video cursus vandaag en erachter te komen hoe je een betere jazz gitarist geworden.

Over Martin Taylor

Martin Taylor is 's werelds grootste online jazz en fingerstyle gitaar leraar met studenten in meer dan 58 landen. Hij heeft gespeeld met Barney Kessell, Joe Pass, Stephane Grappelli, Gary Burton, Frank Vignola, Nelson Riddle, Bireli Lagrene, Jimmy Bruno, Herb Ellis, Jeff Beck, Ralph Towner, Charlie Byrd, Ulf Wakenius en Stan Getz.

of de bezoek: http://play.artistworks.com/free-jazz-guitar-course-from-martin-taylor

0 comments:

Post a Comment

Guitar Lessons for all ages and skill levels

Gitaar spelen is een leuke en creatieve manier om muzikaal te uiten oneâ € ™ s zelf.

Mijn naam is Brian Shuff en Iâ € ™ ve een speciale gitaar-instructeur voor meer dan tien jaar het helpen van studenten van alle leeftijden en vaardigheidsniveaus bereiken Reviews hun volledige potentieel als muzikant en gitarist. Het leren van de gitaar ook leuk en informatief te zijn, thats waarom ik incorporeren leertechnieken € ™ s dat mijn studenten rijden naar houden van gitaar spelen, en hen helpt om vertrouwen te ontwikkelen en bouwen van een grotere waardering voor de muziek.

Ik geef les in alle stijlen van muziek van Rock / Metal tot Klassiek / Jazz en alles daar tussenin. Of je € ™ re een beginner, intermediate of gevorderde speler, ik heb een bewezen methode voor u om te verhogen van uw spel vaardigheden en krijg je waar je wilt muzikaal te zijn. Alle leeftijden zijn welkom.
De prive-lessen worden aangeboden in een huis met een-op-een instructie voor een fijnere leerervaring. Dertig minuten tot een uur per week lessen zijn beschikbaar op het gebied van Oceanside, Vista, Carlsbad, Encinitas, Del Mar, Escondido en Poway.

Voor meer informatie over de lessen en het aanmelden kunt u contact opnemen met Brian Shuff op Briansguitarlessons.com Telefoon: (760)672-1293 E-mail: brianteachesguitar@gmail.com

0 comments:

Post a Comment

Chapter 1 Origins of the Yamaha Synthesizer

Beginning with our release of the SY-1 in 1974, Yamaha's rich history of development and production of synthesizers has now reached the 40-year milestone. As a musical instrument that lets you create exciting new sounds and express yourself freely, the synthesizer has been at the cutting edge of electronic music making ever since it first arrived on the scene. What's more, the technologies perfected in order to make this instrument a reality are now being put to use in all kinds of audio-related devices, and we can rightly say that the synth truly embodies the evolution of modern music.
On the occasion of the 40th anniversary of the Yamaha synthesizer—which has remained consistently at the forefront of the music industry—we explore this innovative history, looking back on the products, technologies, and developments unique to each period.

[Chapter 1] Origins of the Yamaha Synthesizer

Evolution from the Electone


photo:Introduced in 1975, the GX-1 was eight-note polyphonic and had 35 tone generators for sound synthesis. This famous instrument was much loved by owners such as Stevie Wonder and Keith Emmerson.
Introduced in 1975, the GX-1 was eight-note polyphonic and had 35 tone generators for sound synthesis. This famous instrument was much loved by owners such as Stevie Wonder and Keith Emmerson.
Technologies and products that could be seen as prototypes for the first electronic musical instruments have been around since the 1920s, but none has developed in closer association with popular music than the electronic organ. The Electone® ("Electone" is the product name (and trademark) used for Yamaha's electronic organs) debuted in 1959 with the D-1. Similar musical instruments based on vacuum-tube technology were already available at the time, but the D-1 was revolutionary in that its modules relied on transistors alone. Although the Electone set the stage for the modern synth in terms of sound synthesis, it lacked the expressivity of acoustic instruments to such a degree that the president of Yamaha at the time referred to it as a mere "musical toy." The instant one played a key, the instrument produced a tone that ceased immediately with an abrupt mechanical cutoff sound when the key was released.
Various research projects at that time had identified the way in which a tone changes over time as the most important factor in our interpreting it as the sound of a musical instrument. Let's consider the piano as an example: the tone produced when a key is played includes complex harmonics generated by the physical striking of the string. As the sound sustains, however, it gradually comes to resemble a wave with less harmonic content—such as a sine wave. This specific sonic variation over time is the most distinctive characteristic that allows us to identify the sound of the piano. Yamaha realized that the development of technologies capable of recreating these changes in a sound would be critical if electronic instruments were ever to produce the natural-sounding voices of acoustic instruments. In reality, Yamaha's history of synthesizer development actually began with this variation of sound over time and our quest to make the Electone produce more interesting sounds.

Why digital technology in an analog synth?


photo:Christened the "Electone", our D-1 was released in December 1959 as an electronic organ with an all-transistor design.
Christened the "Electone", our D-1 was released in December 1959 as an electronic organ with an all-transistor design.
The tone producing system used in the first-generation Electone was extremely simple. Each key on the keyboard had its own oscillator—or what we now call a "tone generator"—which would generate a sound whenever its key was played. If the keyboard had 40 keys, the instrument would have 40 oscillators, with each pair operating in much the same way as a switch and buzzer. The decision to use new circuits capable of modifying sound over time as described above would thus have meant providing one for each and every key on the keyboard. Given the state of technology at the time, however, this would have made the design extremely expensive and resulted in an instrument that was unfeasibly large.
photo:Sound synthesis in the Electone D-1
Sound synthesis in the Electone D-1

photo:Key assigner at work
Key assigner at work
It was thus clear that new control technology would be required in order to use a limited number of circuits in a more effective manner. If, for example, an instrument had eight control circuits, it could generate up to eight polyphonic tones—that is, eight different notes at the same time. But if it also had 36 keys in a three octave configuration, this new technology would need to know which of the circuits to trigger in response to the playing of a particular key. Our solution was to introduce a device that could assign circuits to keys efficiently, based on the order in which they were played, the total number of keys currently being held down, and other related factors.
This type of device was known as a key assigner, and it can rightly be called the predecessor of today's dynamic voice allocation (DVA) technology. Back in the early seventies, when tone generators still relied on analog technology, digital circuitry was already being put to use in these key assigners. As such, their adoption was an important milestone in the introduction of digital technology in the analog-synth era.

Birth of the SY-1

In 1973, Yamaha completed development work on a prototype codenamed the GX-707. Based on cluster voltage control, this instrument could be regarded as the predecessor of the Electone GX-1. Although it looked just like an Electone, the GX-707 was actually an eight-note polyphonic synthesizer—more specifically, the upper and lower keyboards supported eight-note polyphony, while the solo and pedal keyboards were both monophonic. As the flagship model in the Electone lineup, however, this prototype was conceived of as a "theatre model" for use on the concert stage. With a console weighing in excess of 300 kg and a separate board required for editing tones, it was not well suited for sale to the general public, and to this day is still considered a niche instrument. Yet the GX-707 did possess extremely expressive tone generators, technology which Yamaha elected to use in a separate solo-part keyboard product for use with existing Electones. Thus was born the SY-1 monophonic synthesizer, which became Yamaha's first synth upon its release in 1974. Given that analog synthesizers have typically evolved from monophonic to polyphonic, this reverse pattern—namely, moving from poly to mono—is further evidence of Yamaha's unique way of thinking.

photo:SY-1 envelope section
SY-1 envelope section
Although the SY-1 lacked a key assigner, it did feature an envelope generator for altering its sounds over time. The envelope generators used in synthesizers typically comprise four stages, identified by the letters ADSR. "A" stands for attack time—that is, the adjustable time between pressing of a key and the resultant note reaching its peak level. The decay time—represented by "D"—defines how long it will take when the key is being held down for the sound to drop from this peak to the sustain level. This sustain level, indicated by "S", is the constant volume that held notes ultimately reach. Last but not least, the release time—represented by the "R" in ADSR—specifies how long it will take for the sound to fade away completely once the key has been released.
Normally, one would use a controller for each of these parameters to adjust how the sound should change over time in response to playing, holding, and releasing the keys. However, we can clearly see that the SY-1 control panel lacks the knobs provided on modular synths such as the Moog and Minimoog for configuring the ADSR stages of amplitude and filter envelopes. Instead, a pair of sliders labeled Attack and Sustain are used to adjust the amplitude envelope, and a feature known as Attack Bend allows the pitch and filter envelopes at the beginning of the note to be adjusted in a unique way.
The SY-1 featured a range of preset envelopes for recreating the sound of various instruments such as the flute, guitar, and piano, which could be activated simply by moving the tone levers. Today, we take it for granted that synthesizer presets can be easily recalled, but Yamaha's inclusion of this functionality in its very first analog synthesizer was highly innovative.
Another groundbreaking feature of the SY-1 was touch control, or what is commonly known today as velocity sensitivity. Prior to the introduction of the SY-1, electronic organs had typically been equipped with a volume or expression pedal that the musician could use to modulate the sound for greater expression while playing. Yamaha had, however, been working on a range of different prototypes with the aim of modulating tone based instead on how hard the keys were played. Ultimately, we perfected a technology that measured the strength of playing by detecting how long it took for keys to be fully pressed down, and it was this system that we debuted in the SY-1.

Crossover to CS-Series Combo Synthesizers


photo:GX-1
GX-1
In 1975, one year after releasing the SY-1, Yamaha introduced the GX-1 as a concert-model Electone; however, the first non-Electone products to inherit the unique technologies of the SY-1 were the combo synthesizers of the CS Series.
One of the most notable features of the CS synths was the integrated circuitry used in their tone generators and controllers—components that had up until then taken the form of transistor assemblies. This integration of state-of-the-art technology paved the way for huge weight reductions and vastly improved portability. Consider, for example, the GX-1 and the CS-80—the top-of-the-line CS synth: while these two instruments certainly differed in terms of design and mode of use, the GX-1 weighed in at over 300 kg and had a price tag of seven million yen, but the CS-80 was only 82 kg and cost just 1.28 million yen, meaning that the individual musician could both afford it and move it around.

photo:CS-10
CS-10

photo:Flagship model of the CS Series, the CS-80 debuted in 1977 with eight-note polyphony.
Flagship model of the CS Series, the CS-80 debuted in 1977 with eight-note polyphony.

photo:CS-60 service manual
CS-60 service manual
Yamaha synthesizers at the time had two very distinctive features, the first of which was the ability to retain programmed sounds. These days, we think nothing of storing our original sounds in an instrument's memory in much the same way as saving a file on a PC. Back in the seventies, however, neither RAM nor ROM yet existed, so an extremely analog approach was employed to store sounds. The following illustration shows part of a page from the CS-60 service manual, which was used by technicians when repairing the instrument. This section, titled (Tone Preset 1) Circuit, contains instrument names, resistance values, and a circuit diagram. The synthesizer's levers were connected to variable resistors—that is, circuit elements that can limit current and voltage. As shown, however, fixed resistance values corresponding to specific positions of these levers are built into this circuit. The combination of these values resulted in a certain sound or tone, leading these circuits—which were widely used back then—to be called "tone boards."
In instruments like the GX-1, tone boards were physically inserted and removed to change sounds. As such, Yamaha was already at that time employing a sound storage method not unlike analog-type ROM cartridges. The CS-80, meanwhile, possessed functionality that allowed instantaneous switching between four original sounds. Specifically, it had four complete sets of memory elements, with one memory element from each set corresponding to a specific instrument controller. Each of the four sets could thus be used to store all of the controller positions for a user-created sound.

photo:GX-1 cartridge ROM
GX-1 cartridge ROM

photo:GX-1 cartridge ROM
The other distinctive feature of Yamaha synthesizers was IL-AL type envelope generators. IL and AL refer to Initial Level and Attack Level, respectively, and these envelope generators used a slightly different approach to that of the standard ADSR type. In an ADSR envelope, the value corresponding to the very start of the attack stage is the base value, zero. When we apply the envelope produced by such a generator to a filter, the tone at the start of the sound is determined by the current cutoff-frequency setting; however, the tones at the peak of the attack and while the note is being held are defined by this cutoff-frequency setting in combination with the envelope generator depth and the sustain-level value. Because these tones are thus the result of multiple settings, adjusting the way in which a sound changed over time could become quite confusing. In contrast, when applying an envelope with Initial Level and Attack Level settings, the filter's cutoff frequency determines the tone produced while the note is being held, and the IL and AL controllers can set the tones at the start and peak of the attack stage independently. This approach provides a much higher degree of freedom, especially when trying to recreate natural-sounding tones. As a unique Yamaha feature, the IL-AL type envelope generator further demonstrates the commitment of our developers to high-quality sound creation.
photo:IL and AL type envelope generator (CS-10)
IL and AL type envelope generator (CS-10)

Wheel-type pitch bend and modulation controllers (CS-15D)
Wheel-type pitch bend and modulation controllers (CS-15D)
The CS-80 was also equipped with a portamento bar known as the ribbon controller, which could be used to bend the pitch smoothly, and aftertouch functionality that could detect the pressure applied to each key being held down and change the tone accordingly. Given that these functions remain extremely popular in modern synths, the fact that Yamaha devised and implemented them four decades ago underscores the technical excellence of our synthesizer development team.

Lower prices, more compact designs, and further enhancement

In the latter half of the seventies, we expanded the CS Series with low-priced, monophonic synthesizers, and as amateur musicians could now afford these instruments, they grew in popularity. Thanks in part to rapid advancements in electronic circuit integration and the resultant lower prices, the CS-5, which we introduced to the market in 1978, weighed only 7 kg and cost just 62,000 yen.
Many of the technologies and features of today's Yamaha synths were first realized during the development of compact, affordable instruments such as these. For example, the wheel-type pitch bend and modulation controllers of the CS-15D have become distinctive features of our instruments and are still utilized in the very latest MOTIF XF models. In 1979 we released the CS-20M, switching to digital technology for storing sounds. The CS-70M introduced in 1981 was very similar to modern instruments in terms of functionality: in particular, it offered an auto-tune function that solved the perennial tuning problems encountered in analog synthesizers, and also featured a built-in sequencer realized using a dedicated microprocessor.
The CS-01 of 1982 was a truly pivotal synthesizer. Capable of running on batteries and equipped with a mini keyboard, a built-in speaker, and shoulder-strap pins among other features, it ushered in new era in terms of both sound synthesis and mode of use.

photo:CS-5
CS-5

photo:CS-15D
CS-15D

Inspired to create new forms of synthesis


Released in 1982, the CS01 featured a compact, 48.9 x 3.6 x 16 cm body that weighed just 1.5 kg, allowing players to attach a strap to it and use it as a shoulder keyboard. Battery-powered, and equipped with pitch bending and modulation wheels at the top left of the instrument body, this synthesizer allowed keyboard players to move around on stage in a similar manner to guitarists. The CS01 offered breath control capability, and came with a gray body as standard, with white, black, and maroon color schemes also available (in Japan). Chick Corea was one artist to use the CS01 on stage.
Since its beginnings in 1974, synthesizer development at Yamaha has unfolded in parallel with many other advancements in tone generation technologies that also began back in the seventies. Notable examples are research into FM synthesis, which would go on to become extremely popular in the eighties, and the hybrid Pulse Analog Synthesis System (PASS), which combined digital and analog technologies and was adopted for use in Electone tone generators in 1977. Recordings of the sounds produced by these prototype technologies show that, in particular, the analog synthesis approach used in the SY-1 had actually been perfected to a commercially viable level. In this regard, it is remarkable how quickly the Yamaha developers of the time identified so many highly promising new technologies and immediately put them to use.
Even after we released the D-1 as the first Electone, many issues concerning sound quality still needed to be resolved. One particularly challenging problem was how to make these new instruments as expressive as their acoustic counterparts. As we have seen, changes in tone and volume over time were identified as critical in this regard, prompting continuous, round-the-clock research and development in the pursuit of better and better sounds to satisfy this need. Perhaps symbolic of the high-growth period of the Japanese economy, the then president of Yamaha is said to have instructed his team to "spend whatever you want, but give me something that can be the best in the world." With such passion and devotion, synthesizer development at Yamaha during the seventies did more than give birth to a dazzling array of original technologies—it undoubtedly laid the foundations for the coming popularization of the synthesizer as a musical instrument.

}());

0 comments:

Post a Comment